Использование термостата в проектах на Arduino

Терморегулятор или термостат — это устройство, которое измеряет температуру, работает в системе регулирования внутридомовых сетей отопления для поддержания заданной температуры внутреннего воздуха.

Общий вид

С помощью Arduino, термостат можно превратить в «умное» устройство, которое будет контролироваться и управляться пользователем на расстоянии через Вай-Фай и смартфон.

Несколько слов о термостатах

Для того чтобы правильно выбрать термостат для совместной работы с Arduino, необходимо понимать принцип их работы и знать классификацию, поскольку не все они могут работать в паре.

Термостат в системе отопления

Существует несколько типов термостатов, которые используются в бытовой системе отопления:

  1. Высокого напряжения — самый простой вариант, как правило, работает непосредственно на нагревательном приборе радиаторе или конвекторе, запитан от сети 220 В. Принцип управления температурой прост: при высокой температуре воздуха в помещении, проход теплоносителя через радиатор уменьшается, вплоть до полной остановки, а при низкой — наоборот.
  2. Низкого напряжения, на сегодняшний день это самый распространенный вариант для домашних систем отопления. Его главное отличие от первого типа, он запитан от низкого напряжения, как правило, 24 В, а объектом управления является источник нагрева: газовый, твердотопливный или электрокотел. Они сами не контролируют и не управляют подачей теплоносителя, а сообщают источнику отопления, что делать, в зависимости от температуры окружающей среды: закрыть или открыть подачу газа в котел, включить или отключить подачу напряжения на ТЭН в отопительном контуре электрокотла. В твердотопливном котле процесс регулирования осуществляется путем подачи определенного объема дутьевого воздуха в топку, например, при закрытии заслонки, воздух поступать в котел не будет и горение твердого топлива прекратится.
  3. Умные термостаты еще более функциональные. Они, как правило, имеет погодозависимое управление тепловым процессом. Тепловой режим котла поддерживается по температуре наружного воздуха. Такие термостаты хорошо интегрируются в систему «Умный дом».

Как создать собственный «умный» термостат Arduino

Термостат на Arduino основан на фреймворке MySensors. Это сообщество разработчиков аппаратного ПО с открытым исходным кодом, которое специализируется конкретно на создании бытовой автоматики. MySensors хорошо известный в мире DIY (Do It Yourself или Сделай это сам) компонентов, такие как Arduino, Raspberry Pi, ESP8266 и NRF24L01, для создания датчиков и приводов бытовой автоматизации DIY.

Arduino на фреймворке MySensors

Проект помогает домашним мастерам создавать свои «умные устройства», при этом не затрачивая много часов времени и усилий на самостоятельную разработку новых систем управления и ПО. Он использует MQTT, поэтому пользователь может интегрировать вновь созданный датчик с любым контроллером домашней автоматики.

Что нужно приобрести для создания «умного» термостат Arduino

Сердце «умного» термостата — Ардуино Нано, модернизированная Emakefun Nano. Это не очень большое, завершенное устройство, удобное для создания программируемого макета с высококачественной платой, работающей на микроконтроллере Atmega328P-AU. Ардуино Нано использует технологию Immersion Gold, поддержку загрузки ISP, USB и питания через USB. Пайка не требуется.

Ардуино Нано

При разработке Ардуино Нано использовались высококачественные оригинальные материалы для печатных плат, что гарантирует надежность работы.

Приемопередатчик NRF24L01

Также потребуется модуль приемопередатчика NRF24L01 Arduino NRF24L01 + 2.4 Гц. Он использует полосу 2.4 ГГц и может работать со скоростью от 250 кбит/с до 2 Мбит/с. При использовании на открытом пространстве и с более низкой скоростью передачи, его диапазон может достигать 100 м. Модуль может использовать 125 различных каналов, что дает возможность иметь сеть из 125 независимо работающих модемов в одном месте. Каждый канал может иметь до 6 адресов.

Кабели Aukru для Arduino

Энергопотребление этого модуля во время передачи составляет всего около 12 мА, что даже ниже, чем у светодиода. Рабочее напряжение модуля составляет от 1.9 до 3.6 В, его контакты допускают логику 5 В, поэтому он легко подключается к Arduino без использования каких-либо преобразователей логического уровня.

Для сборки схемы потребуются соединительные кабели Aukru для Arduino Raspberry Pi с длинной 20 см и расстоянием между выводами: 2.54 мм. Кабели-перемычки Raspberry Pi можно разделить, чтобы сформировать сборку, содержащую необходимое количество проводов для подключения, а также для поддержки нестандартных заголовков с нечетным интервалом.

Датчик температур

Датчик температуры и влажности SODIAL (R) DHT22 AM2302 — это цифровой модуль для Arduino Raspberry DIY имеет отверстия для крепежного винта, поэтому его удобно устанавливать и фиксировать в любом комплекте. Цифровой выходной сигнал с одной шиной, и двунаправленными последовательными данными. Рабочее напряжение 5.5 В постоянного тока, рабочий диапазон температур от -40 до 80 °С, точность измерения +/- 0.5 °С. Диапазон влажности от 0 до 100%, точность измерения влажности: +/- 2%.

JBtek-4

Релейная плата JBtek — 4-канальный релейный модуль постоянного тока 5 В для Arduino Raspberry Pi DSP AVR PIC ARM. Оснащен сильноточным реле, AC250V 10A; DC30V 10A. Плата 4-канального релейного интерфейса 5 В, каждому из которых требуется ток драйвера 50–60 мА. Умеет управлять различными приборами и другим оборудованием с большим током, поддерживает промышленную область, управление PLC, управление «умным домом». Имеет светодиоды индикации состояния релейного выхода.

Подключение термостата 24 В

Схема подключения термостата обозначается в паспорте на конкретное устройство заводом изготовителем.

Пример схемы

Для примера можно показать порядок подключения термостата на Ардуино, на выше обозначенной схеме:

  • Красный цвет, терминал Р, клемма питания переменного тока 24 В. Нередко можно найти 2 красных кабеля RH и RC. В этом случае, оба питаются напряжением 24 В переменного тока, и можно использовать их для отдельного включения тепла и охлаждения.
  • Черный цвет, терминал С, это общее заземление.
  • Белый цвет, терминал В, эта клемма для подачи сигнала на включение теплоносителя.
  • Желтый цвет, терминал Y, эта клемма, которая включает циркуляционный насос.
  • Оранжевый цвет, терминал О, здесь клеммы O и B взаимодействуют с обратным клапаном. Обратный клапан контролирует поток холодной воды в обратном трубопроводе, через подмешивание его с горячим подающем теплоносителем. Таким образом, регулируется температура теплоносителя на нагревательных приборах.
  • Синий, терминал B, аналогичен клемме O, но для подачи тепла. Очень часто можно увидеть, что эти два терминала объединены в один с надписью O/B.
  • Зеленый терминал G, эта клемма управляет вентилятором источника нагрева.

Программный код термостата Arduino

Аналогично, как и в схеме подключения, код каждого термостата Arduino будет немного отличаться. Его нужно адаптировать к потребностям тепловой сети.

Для примера, можно показать программный код для схемы Ардуино Нано на микроконтроллере Atmega328P-AU. Скачать его можно по ссылке ниже:

https://cloud.mail.ru/public/hs1C/CtfPcvEJo

Программный код 1

Программный код 2

Программный код 3

Программный код 4

Программный код 5

Программный код 6

Программный код 7

Программный код 8

Эту схему можно модернизировать, например, добавить такие функции:

  1. Датчик движения для включения и выключения источника нагрева, в зависимости от присутствия жителей.
  2. Режим «АВТО», автоматическое ведение тепловым процессом.
  3. Внешние датчики для измерения температуры в помещении в разных местах.
  4. LED-экран для контроля температуры.

Программный код умный дом

Скачать можно по ссылке ниже:

https://cloud.mail.ru/public/Ws2t/4g1zJWgyG

Таким образом, функциональные возможности терморегулятора с Arduino огромны. Они могут учесть, практически все, внутридомовые системы отопления. Современная промышленность наладила выпуск комплектующих изделий для такой схемы управления, а используя возможности Arduino и фреймворка MySensors, домашняя «умная» автоматики может быть реализована в каждом доме своими руками.

Видео по теме

Ссылка на основную публикацию
Adblock
detector