Любая электрическая цепь обладает сопротивлением к течению тока, обоснованным тем, что часть электронов тратиться на работу внутри компонентов системы. К последней, можно отнести генерацию магнитных полей, света, тепла, или иного излучения. Часто происходящие процессы переработки энергии внутри платы извне человеку не заметны, но в любом случае присутствуют в каждом электротехническом элементе конструкции.
Принцип совместной работы компонентов подразумевает, что ток внутри всего комплекса течет с разным напряжением. К примеру, время наполнения конденсатора зависит от его емкости и приходящего количества электронов, выражаемого в вольтах. Для усилителей, в роли которых выступают транзисторы, открывающие базу характеристики тока должны быть меньше общих значений напряжения по плате.
Внутренним понижением уровня заряда занимаются резисторы — сопротивления, преобразующие часть поступающего тока в тепло, и рассеивающие излишки в окружающую атмосферу. Получаемая температура микроскопична и не заметна пользователю, тем не менее она присутствует на корпусе детали. Кроме резисторов, препоны движению тока есть во всех частях и элементах схемы. Даже в проводниках, расположенных между компонентами системы. И чем хуже качество и химический состав соединяющих линий — тем больше будет теряться энергии на бессмысленное преобразование электричества в тепло или магнитные поля. Уходит ток и во всех радиодеталях на схеме.
Знание текущего сопротивления всей конструкции в целом, и каждой детали по отдельности — минимум необходимый электронщику, вне зависимости от того, проектирует он новую схему, или ремонтирует уже существующую.
Самые простой пример — неисправность резистора, или неверные его характеристики. Неработоспособность элемента не позволит вовремя наполнить (или вообще заблокирует возможность) конденсатор. Или, как вариант, — нарушит уровень сигнала одного из транзисторов. Все перечисленное приведет к выходу всей системы из строя, или к возникновению ошибок функционирования на ее части.
Определить рабочее (активное) сопротивление элемента, или участка цепи, можно с помощью прибора — омметр. Аппарат замеряет значение от микроскопических долей Ом до нескольких мегаом, в зависимости от своего типа.
Существующие варианты омметров и их внутреннее устройство
Омметры делятся на множество категорий. По реализации — на щитовые, лабораторные или переносные. В соответствии с чувствительностью к величинам Ом. Или по технологии определения — на магнитоэлектрические, логометрические, аналоговые и цифровые.
Не редкость, что современные омметры интегрированы в более универсальные измерители, позволяющих кроме сопротивления, определять исходящее от внешней цепи напряжение и силу тока.
Магнитоэлектрические
Омметры настоящего типа подключаются в цепь к потребителю и работают на основе определения приходящей силы тока (ампер), при известных характеристиках изначального, поступающего на линию напряжения. Для точности, учитывается и уменьшение значения за счет самого измерительного прибора. Математический базис функциональности описывается формулой:
Где I — получаемая сила тока на входе омметра, U — изначальное напряжение, Rизмерителя — сопротивление прибора, Rцепи — искомое потребление участка прохождения тока в Ом. Неудобство аппарата подобного типа в его нелинейности показаний, необходимости выставлять «0» на индикаторе перед началом работы, и обратной шкале, где минимальные потери энергии отображаются крайне-правым положением стрелки прибора.
Логометрические мегаомметры
Работает прибор на принципе противостояния двух магнитных полей, создаваемых на внутренних катушках. Входящее напряжение отклоняет стрелку измерителя в одну сторону, внутреннее в другую. Разница сил и дает угол индикатора, указывающий визуально на соответствующее значение.
Чем выше сопротивление подключенного потребителя, тем меньше будет получаемое напряжение одной катушкой, относительно другой — берущей энергию с линии до момента ее исхода. Соответственно и стрелка будет сильнее отклонятся по шкале.
Аналоговые электронные
Омметры указанного класса, преобразуют разницу между входящим током цепи и выходящим из нее, в напряжение через операционный усилитель. Объект измерений подключается к цепи обратной связи, или на вход ОУ.
Цифровые
Работа цифрового омметра строиться на аналогичности измеряемого значения, характеристикам интегрированного в прибор моста, управляемого микроконтроллером. То есть, логическое устройство будет физически изменять параметры встроенного потребителя до тех пор, пока результаты его выхода не приблизятся к получаемым по внешней линии. Так как градация возможной смены известна и заложена в память микро-ЭВМ — микроконтроллеру останется только отобразить результат согласно записанных значений.
Методы проведения измерений
Пользоваться омметром не сложно. Они выпускаются двух видов — с параллельным и последовательным подключением к измеряемой цепи. Существуют и универсальные варианты приборов, тип соединения в которых задается селектором.
Для начала измерений, рукоятками или клавишами управления выставляется глубина исследуемых значений, среди которых микро-, милли-, кило-, мега-, или обычные Омы. В магнитоэлектрических приборах выставляется «0» индикатора, для остальных — этап пропускается. Омметр подключается к исследуемой цепи, согласно своему виду — последовательно или параллельно. На шкале или экране устройства отобразятся итоговые значения сопротивления.
Все сказанное верно в отношении обычных измерителей. Но, существует подкласс омметров, которые рассчитаны на проведение исследований диэлектрических материалов. К примеру, защитных оболочек кабеля или изоляции провода. Работа с ними немного отличается хотя бы тем, что проверка выполняется не на замкнутой цепи, а в двух различных проводниках, разделенных прослойкой из материала, характеристики которого нужно выяснить. Здесь хорошим примером будут изолированные жилы классического кабеля. Устойчивость к пробою между которыми, проверяется и производителем, и конечным пользователем высоковольтных линий прохождения тока.
У омметров, рассчитанных на измерение мегаом, зачастую присутствует третий контакт, к которому подводят экран изолированного провода.
Сама процедура, у устройств высоковольтного плана, занимает определенное время, указанное в эксплуатационных характеристиках проверяемого материала. Весь период испытаний, значения сопротивления изоляции меняться не должно.
Сама генерация необходимого в измерениях тока может производится вращением человеческой силой выведенной ручки, сторонним источником питания, или преобразованием внутренней энергии прибора в повышенный вид. Часто мегаомметры оснащены таймером, демонстрирующим период времени прохождения испытания.
Выбирая омметр
Вначале нужно определить сферу применения. Аппараты, рассчитанные на диэлектрики, или разработанные с целью проверки конечного сопротивления частей электротехники, отличаются напряжениями. И не заменяют друг друга. Речь идет о тысячах вольт в первом случае и нескольких единицах во втором.
Следующая по значимости характеристика — глубина измерений, то есть тот лимит чувствительности прибора, в котором он способен определять сопротивление. Обычно указывается в эксплуатационных документах устройства. Но и без последних можно узнать приблизительную широту, на основании делений аналоговой шкалы, или допустимых положений селектора режимов.
Третий, но не менее важный параметр у измерителя, влияющий на выбор — точность прибора. Здесь конечно потребуется изучение документации модели. Кроме того, нужно помнить, что определение показаний аналоговой шкалы изначально осложняется стрелочным видом индикатора. Соответственно будут крошечные отличия от реального положения дел. Цифровые приборы, с числовыми показаниями, ненамного лучше — принцип их действия допускает определенную погрешность в отображаемых данных.
Топ лучших на рынке
Омметр — это прибор, который измеряет сопротивление участка цепи, или конкретного ее элемента. Он может быть, как отдельным аппаратом, так и частью многофункционального измеряющего оборудования. В представленном ТОПе, будут рассмотрены все варианты на основе востребованности моделей на рынке, согласно информации, специализированных СМИ и персональных отзывов покупателей.
Мегаомметры
Модель | Тип | Пределы измерений (МОм) | Вольтаж измерений (В) | Погрешность | Тип повышающего ток источника | Дополнительные возможности | Цена (руб) |
---|---|---|---|---|---|---|---|
МЕГЕОН 13125 | Цифровой | 0–49900 | 2500 | 10% | Преобразователь энергии батарей АА | Измерение переменного напряжения 30–600 В | 8980 |
МЕГЕОН 13500 | Аналоговый | 0.1–2500 | 1 % | Рукоятка | Нет | 10569 | |
МЕГЕОН 131100 | Цифровой | 0.1–2000 | 4 % | Преобразователь энергии батарей АА | Определение напряжения постоянного и переменного тока | 6890 | |
UNI-T UT511 | Цифровой | 0.1–2000 | 1000 | 2–3 % | Преобразователь энергии батарей АА | Аналоговая гистограмма, подсветка экрана, таймер, сохранение результатов, ведение журнала (18 показаний), дополнительные вычисления | 9269 |
Радио-Сервис Е6-32 | Цифровой | 1–10000,
10000–99900 100000–300000 |
50–2500 | 3 %,
5 %, 15% |
Преобразователь энергии батарей АА, блок питания | Журнал (10000 показаний), сохранение 100 настроек, связь с ПК через Bluetooth | 28710 |
Среди упомянутых в таблице мегаомметров, лучшим по характеристикам, возможностям и защите корпуса выглядит Радио-сервис E6-32, несмотря на свою высокую цену.
Специализированные омметры
Модель | Тип | Пределы измерений | Погрешность | Дополнительные возможности | Цена (руб) |
---|---|---|---|---|---|
UNI-T UT522 | Цифровой | 0.004 МОм | 5 % | Фиксация (Hold) результатов теста, измерение напряжения | 13190 |
RGK RT-25 | -//- | 20000 МОм | 3 % | Нет | 9900 |
CEM DT-5500 | -//- | 2000 МОм | 3.5 % | Фиксация (Hold) результатов теста, измерение напряжения переменного до 750 В и постоянного до 1000 В | 12100 |
SEW 1800IN | Аналоговый | 200 МОм | 5 % | Измерят напряжение переменного тока до 600 В | 12150 |
HR390 | Цифровой | 120 Ом–1 МОм | <1 % | Доступно измерение емкости конденсаторов, подсветка дисплея | 3600 |
Некоторые модели списка способны взять на себя функции мегаомметров (измерителей сопротивления диэлектриков). Лучшим, именно по возможностям, для измерения сопротивления участков цепи, здесь будет GEM DT-5500.
Мультиметры
Характеристика | РЕСАНТА
DT 838 |
RGK
DM-10 |
ELITECH
ММ 300 |
Tesla
DT832 |
Mastech
MY-68 |
---|---|---|---|---|---|
Измерение переменного напряжения | 200–750 В | 200–600 В | 20–750 В | 200–750 В | 200–750 В |
Погрешность вольтажа переменного тока | 1.2 % | 1.2 % | 1.2 % | 1.2 % | 1.2 % |
Определение силы переменного тока | Нет | Нет | До 20 A | Нет | До 10 А |
Измерение постоянного напряжения | 200 мВ–1000 В | 20 мВ–600 В | 200 мВ–1000 В | 200 мВ–1000 В | 20 мВ–600 В |
Погрешность вольтажа постоянного тока | 0.5 % | 0.5 % | 0.5 % | 0.5 % | 0.5 % |
Определение силы постоянного тока | 2000 μА–10 А | 2000 μА–10 А | 20 μА–20 A | 2000 μА–10 А | 2000 μА–10 А |
Погрешность силы постоянного тока | 1 % | 2 % | 2 % | 1 % | 2 % |
Чувствительность к сопротивлению | 200 Ом–2000 кОм | 200 Ом–20 МОм | 200 Ом–200 МОм | 200 Ом–2000 кОм | 200 Ом–32.6 МОм |
Погрешность значения сопротивлений | 1 % | 1 % | 1 % | 1 % | 1 % |
Прозвонка | Есть | Есть | Есть | Есть | Есть |
Звуковой сигнал | Есть | Есть | Нет | Есть | Есть |
Проверка транзисторов | Есть | Есть | Есть | Есть | Есть |
Проба температуры | ºC | ºF и ºC | ºC | Нет | Нет |
Измерение частоты | Нет | Нет | До 10 Гц | До 10Гц | До 10 Гц |
Определение емкости конденсаторов | Нет | Нет | До 20 μF | Нет | 32.6 μF |
Hold | Нет | Есть | Есть | Нет | Есть |
Подсветка | Нет | Есть | Нет | Нет | Нет |
Дополнительно | Нет | Нет | Раздельная кнопка включения | Нет | Авто выбор глубины измерений |
Цена (руб) | 640 | 1190 | 890 | 429 | 2888 |
Здесь устройства универсальны, и определяют не только сопротивление, но и большую часть характеристик схем, необходимых знать электронщику. Все представленные мультиметры – цифровые. В перечне, самой интересной и полной функционально моделью можно назвать ELITECH ММ 300. Недорогой аппарат, со множеством дополнительных возможностей и неплохой точностью.
Резюмируя
Информация, представленная в статье, дает исчерпывающее описание того, что такое омметр, зачем он нужен, как устроен и на что обращать внимание при выборе прибора. Надеемся, поспособствует верному решению и представленный ТОП наиболее продаваемых моделей на начало 2021 года.
Отдельно, за рамками темы статьи остались мегаомметры, измеряющие сопротивление заземления. Они, собственно, не многим отличаются от своих аналогов, применяемых в исследованиях диэлектриков.