Как сделать термометр своими руками

Одной из характеристик среды, всегда интересовавших человека, была температура. Знание текущей дома или на улице обуславливает нахождение людей в помещении и возможность выхода их за пределы комфортного пространства. Не последним, при надлежащей информированности, будет и выбор носимой одежды. Посудите сами: изнывая от жары, и наблюдая на домашнем градуснике +35, при этом видя на уличном +20, где пожелает остаться человек? Или на оборот, при возникновении необходимости выхода, но в случае внешней температуры далеко ниже 10, устройство ее измеряющее, предупредит владельца о необходимости тепло одеться.

Разница температур

Возможность изготовить термометр своими руками доступна любому человеку, даже в тех случаях, если он и понятия не имеет об электронике, механике или связанных науках. Достаточно вспомнить историю и виды существовавших устройств, измеряющих температуру.

Изначально, градусники были аналоговыми на основе изменения свойств различных жидкостей и материалов при нагреве и охлаждении. Все они расширяются при повышении температуры и сужаются в процессе ее падения. Соответственно, столбик жидкости внутри стеклянной трубочки, выступавшей в роли индикатора, поднимался или опускался. Для металлических спиралей, выступавших в роли градусника, использовался факт их сужения на холоде или раскручивания в тепле. На конец подобной пружины помещалась стрелка, которая двигалась в зависимости от окружающей температуры и указывала на текущее ее значение по шкале.

Механический бытовой градусник

На смену аналоговым измерителям пришли электромеханические градусники. Основой их работы стали терморезисторы и чувствительные к характеристике диоды. Первые в зависимости от температуры изменяют сопротивление, у вторых с ее повышением нарушается p-n переход, позволяя легче идти току в обратном направлении. В качестве индикаторов для электромеханики применялись стрелочные вольтметры и амперметры, градуированные к работе с конкретным чувствительным элементом.

Дальнейшее развитие технологий и перевод аналоговой обработки в цифровую коснулась и градусников. Теперь реакцию датчика определяет «умный» микроконтроллер, преобразовывая ее в понятный людям вид и высвечивая итоговые градусы числами на индикаторе. Плюсом последних аппаратов, служит возможность дальнейшей обработки, сохранения и передачи полученной информации о текущем состоянии окружающей среды.

пример цифровых градусников

Аналоговый термометр

Начнем с самого простого способа изготовления бытового термометра, который не требует знания электрической части. Понадобится:

  • бутылка или любая иная относительно небольшая емкость, главное требование к которой, чтобы соломинка помещалась в нее почти полностью;
  • пластилин;
  • тушь или иной краситель;
  • прозрачная или матовая соломинка для коктейля;
  • содержащая спирт жидкость (духи, одеколоны, водка или любые аналогичные);
  • вода;

Рецепт изготовления: заливаем емкость до края, смесью воды пополам со спиртом. Добавляем краситель и перемешиваем. Опускаем соломинку до половины в жидкость. Фиксируем пластилином, плотно замазав промежуток между ней и стенками.

Позади получившегося индикатора размещают лист бумаги, на котором в зависимости от показаний эталонного градусника и высоты жидкости в соломинке размечают значения температур.

Самодельный термометр, сделанный ребенком

Точность устройства зависит только от качественной градации индикатора. Пределы измеряемой температуры лежат в промежутке от −40 °C до +90 °C.

Простой электронный

Для того, чтобы сделать электронный градусник, требуется немного более сложная конструкция. Индикатором температуры в нем служит амперметр чувствительностью в 50 мкА, а датчиком выступает терморезистор типа СТЗ-19 с унарным номиналом сопротивления в 10 кОм. У последнего есть много аналогов различных производителей, на тот случай, если не удастся найти оригинал указанной маркировки.

Итак, чтобы создать электронный термометр, потребуются:

Обозначение на схеме Наименование Аналоги
VT1, VT2 Транзисторы KT315A КТ3102 (А, Б, В, Г)
S1 Тумблер включения
R1 Резистор 68 Ом
R2 Переменный резистор 680 Ом
R3 Переменный резистор 22 кОм
R4, R5 Резисторы 6.2 кОм
R6* -//- 9.1 кОм
R7* -//- 910 Ом
R8 Терморезистор СТЗ-19 10 кОм
GB1 Две пальчиковые батарейки 1.5 В
S2 Двухпозиционный переключатель режима работы калибровка/измерение
PA1 Любой микроамперметр с предельным положением стрелки в 50 мкА. Желательно наибольшей длины шкалы, для последующего удобства разметки.

Схема

Единственное замечание к конструкции — терморезистор R8 нужно вынести отдельно на двух проводах от остальных элементов, чтобы излучаемое ими тепло в процессе работы не влияло на итоговые показания. В остальном схема электронного термометра отображена на картинке:

Принципиальная схема электронного термометра

Наладка

Прежде чем производить градуировку шкалы микроамперметра под показания температуры, требуется подобрать суммарное сопротивление R6 и R7 равное значению, которое выдает R8 при эталонной температуре, планируемой, как самой низкой в измерениях настоящим градусником. Использоваться цепь R6-R7 будет только при калибровке. Впоследствии ее можно безболезненно демонтировать.

Подобрав параметры элементов согласно рекомендации, поворотом R2, при работе аппарата в режиме «калибровка», устанавливаем стрелку PA1 в нулевую позицию. Подстройка R3 должна находится на средине.

Переключив самодельный термометр на «измерение» производим пробу терморезистором нагрева воздуха или жидкости с известной температурой. Отмечаем ее на шкале микроамперметра. Аналогичным образом поступаем с остальными показаниями эталонного градусника.

Принципиальная схема электронного термометра

По окончании настройки устройства, резисторы R4, R6 и R7, вместе с переключателем S2 можно убрать, соединив минусовой контакт амперметра напрямую с точкой связи R5 и R8.

Точность и пределы

Электронно-аналоговый датчик, несмотря на простоту конструкции, весьма точен — до 0.1 градусов Цельсия. Пределы зависят только от минимальной температуры с которой производились установки нуля шкалы, и максимума нагрева до выхода терморезистора из строя. Для СТЗ-19 предел «выживания» находится чуть свыше 110 ºC.

С использованием Arduino

Есть много схем описывающих цифровой термометр с использованием микроконтроллера Ардуино. Все они однообразно берут измеренную температуру от датчика и отображают ее на дисплее, который имеет достаточно небольшой размер. То есть, на улице такую систему конечно использовать можно, но требуется отображающий экран помещать поближе к людям или вообще монтировать его внутри помещений.

Один из вариантов уличного термометра

Чем хорош микроконтроллер, что шкалой может выступать не только цифровой индикатор. Хотя и последний имеет право на жизнь, для считывания показаний в тех местах, где не видно уличный информатор. Что касается последнего, — в его роли можно использовать длинную самодельную линейку (в роли которой способна выступать и обычная доска любых габаритов), с нанесенной разметкой и перемещаемой сервоприводом стрелкой, демонстрирующей текущие значения температуры.

Механизм

Общая конструкция механизма выглядит следующим образом:

Общая конструкция механизма

Нижний и верхний конец шкалы определяется физическим положением установленных выключателей, которые замыкает собой подвижный указатель, при достижении предела размеченной длины. Требуется последнее только для стартовой калибровки механизма при первом запуске системы.

Чтобы на точность представленного измерителя не влияли внешние погодные факторы (подвижная струна и направляющая удлиняются в жару и сокращаются при холоде), рекомендуется верхний ролик и поддерживающую проволоку закреплять на жестких пружинах «в натяг».

Схема

Несколько замечаний по схеме. Для числового вывода информации о температуре используется цифровой индикатор TM1637. Дополнительно, описанный ранее механизм, отображает значение на «аналоговой» шкале с помощью биполярного тактового двигателя М1. S1 — блокирующий выключатель, устанавливаемый сверху шкалы, S2 — снизу.

Однократное нажатие кнопки S3 переключает Ардуино в поиск положения нулевой температуры (при этом загорится светодиод LED1). «Стрелка», указывающая градусы, передвинется на требуемый уровень, для последующей отметки места начала измерений. Далее, пользуясь установленным максимумом и минимумом, с помощью линейки, размечают остальную шкалу ниже и выше нуля.

Повторное нажатие S3 переключит устройство в стандартный режим работы. Светодиод погаснет, а стрелка передвинется на позицию, соответствующую текущей температуре.

Принципиальная схема цифрового градусника с Arduino

Питание на ULN2003A подается от иного источника, чем тот, который поддерживает работу самого микроконтроллера. Последнее сделано во избежание «наводок» паразитными токами двигателя на общую схему.

Управляющий скетч

Для работы с TM1637 понадобиться библиотека Groove 4Digital Display, ее адрес:

https://github.com/Seeed-Studio/Grove_4Digital_Display

Скетч можно скачать здесь: https://cloud.mail.ru/public/4gRK/ri7sjm19N

Точность

Округления до целой части в скетче, привели к снижению точности показаний до ближайшего градуса на аналоговой шкале. На числовом индикаторе, подобной проблемы не наблюдается — он отображает полученную температуру корректно.

Высокотемпературный градусник

Для тех случаев, когда требуется измерение температуры свыше пределов «выживания» терморезистора, используется термопара. Ее функциональность сохраняется и при 600 градусах Цельсия. Подобный определитель нагрева среды может быть полезен не только на производстве, но и дома. К примеру, определять температуру работы духовки или текущую на жале паяльника.

Промышленный градусник с термопарой

Схема

Термопара генерирует микроскопический ток, малым напряжением и силой. Для преобразования полученных характеристик, в понятный микроконтроллеру вид, используется шилд Ардуино с микросхемой MAX6675. Вывод показаний осуществляется на числовой индикатор ТМ1637.

Принципиальная схема высокотемпературного градусника

Скетч

Скетч, как и в предыдущем случае, требует библиотеки Groove 4Digital Display для управления индикатором. Преобразователь MAX6675 контролируется процедурами из одноименной коллекции, расположенной по адресу:

https://github.com/adafruit/MAX6675-library

Скетч можно скачать здесь: https://cloud.mail.ru/public/Y8Yz/jYWsjgY29

Резюмируя

Создание термометра своими руками доступно любому человеку. Даже в тех случаях, если он не имеет базовых знаний электротехники. Устройства изначально легки в сборке и настройке, а точность измерения вполне достаточна для любых бытовых и промышленных применений. Надеемся, статья в общем и частностях дала понятие, как сделать термометр любого вида в домашних условиях.

Видео по теме

Ссылка на основную публикацию
Adblock
detector