Фотореле и принципы их работы

Фотореле представляют собой разновидность электронных приборов, которые предназначены для дистанционного контроля и управления разнообразными исполнительными устройствами малой и средней мощности. Достоинства современных фотореле (как устройств) — это компактность и простота настройки, поэтому подобная аппаратура широко используется в промышленности и быту.  В частности, они управляют системами включения и защиты крупного металлообрабатывающего оборудования (листоштамповочных прессов, сварочных автоматизированных комплексов или радиально-сверлильных станков), используются для контроля внешнего освещения и тому подобное.

промышленное применение фотореле

Принципы функционирования и базовые компоненты фотореле

Что такое фотореле? Исполнительная схема устройства состоит из следующих компонентов:

  1. Датчика, который представляет собой электронный компонент, обнаруживающий присутствие видимого света, инфракрасного излучения и/или источника ультрафиолетового излучения.
  2. Усилителя сигнала (иногда — в комплекте с преобразователем одного вида излучаемой энергии в другой).
  3. Исполнительного элемента — микроконтроллер, который содержит биполярный полевой фототранзистор.
  4. Блока управления.
  5. Блока питания.

Фотодатчики

Большинство фотодатчиков — это полупроводники, обладающие свойством, называемым фотопроводимостью. Оно заключается в изменении параметров электрической проводимости в зависимости от интенсивности светового излучения, попадающего на материал.

Как работает фотореле, ясно из рисунка. Фотоэлектрические устройства можно подразделить на две основные категории: те, которые генерируют электричество при освещении — фотоэлектрические или фотоэмиссионные излучатели — и те, которые каким-либо образом изменяют свои электрические характеристики (фоторезисторы или фотопроводники).

типы фотоэлектрических устройств (слева – полупроводниковое, справа – фотоэмиссионное)
Типы фотоэлектрических устройств (слева — полупроводниковое, справа — фотоэмиссионное)

Таким образом, в типовую конструкцию фотореле могут входить следующие исполнения фотодатчиков:

  • Фотоэмиссионные ячейки — это устройства, которые выделяют свободные электроны из светочувствительного материала, для чего на световоспринимающую поверхность должен попасть фотон с достаточной энергией. Количество энергии, которое имеют фотоны, зависит от частоты света: чем выше частота, тем больше энергии у фотонов, преобразующих энергию света в электрическую энергию;
  • Фотопроводящие элементы, которые изменяют своё электрическое сопротивление при воздействии света. Фотопроводимость возникает в результате попадания света на полупроводниковый материал, который контролирует протекающий через него ток. Наиболее распространенным фотопроводящим материалом является сульфид кадмия, используемый в фотоэлементах LDR;
  • Фотоэлектрические элементы. Принцип действия основан на генерировании ЭДС пропорционально полученной энергии лучистого света, что по своему эффекту аналогично фотопроводящим компонентам. Световая энергия попадает на два полупроводниковых материала, расположенных вместе. В результате вырабатывается напряжение не менее 0.5 В. Наиболее распространенным фотоэлектрическим материалом является селен, используемый в солнечных элементах;
  • Фотоприёмные устройства. Это — полупроводники (фотодиоды или фототранзисторы), на которые нужно направить свет для управления потоком электронов и дырок через PN-переход. В фотореле используют электронные компоненты, специально разработанные для применения детектора и проникновения света с их спектральным откликом, который настраивается на длину волны падающего света.
фотореле на базе LDR-элементов с блоком питания
Фотореле на базе LDR-элементов с блоком питания

Фоторезистор

Фотопроводящий датчик не вырабатывает электричество, а просто изменяет свои физические свойства при воздействии энергии света. Наиболее распространенным типом фотопроводящего устройства является фоторезистор, который изменяет свое электрическое сопротивление в ответ на изменения интенсивности света.

Фоторезисторы — это полупроводниковые устройства, которые используют энергию света для управления потоком электронов и, следовательно, током, протекающим через них. Обычно этот элемент называется светозависимым резистором или LDR.

Принцип работы фотореле на соответствующем фотодатчике представлен на рисунке:

устройство и принцип действия фоторезистора
Устройство и принцип действия фоторезистора

Как следует из его названия, светозависимый резистор (LDR) нужно изготовить из открытого полупроводникового материала, например, сульфида кадмия, который изменяет своё электрическое сопротивление от нескольких тысяч Ом в темноте до нескольких сотен Ом, когда на него падает свет, создавая дырочно-электронные пары в материале.

Эффект заключается в улучшении проводимости фотодатчика с уменьшением сопротивления для увеличения освещения. Фоторезистивные ячейки имеют большое время отклика, которое нужно, чтобы отреагировать на изменение интенсивности света.

Светочувствительные материалы

Материалы, используемые в качестве полупроводниковой подложки — сульфид свинца (PbS), селенид свинца (PbSe), антимонид индия (InSb), которые обнаруживают свет в широком диапазоне волн. Наиболее часто используемым из всех фоторезистивных датчиков света является сульфид кадмия (Cds), потому что его кривая спектрального отклика ближе всего соответствует кривой человеческого глаза, для чего требуется наличие любого источника света. Длина волны пиковой чувствительности для фотоэлемента из сульфида кадмия составляет от 560 до 600 нм в видимом спектральном диапазоне.

В качестве фотодатчика часто используют проводящий элемент ORP12. Этот светозависимый резистор имеет спектральный отклик около 610 нм в области света от жёлтого до оранжевого. Сопротивление элемента, когда он не освещён (темновое сопротивление), очень высокое, около 10 МОм, которое падает до 100 Ом при полном освещении (номинальное сопротивление).

Чтобы увеличить темновое сопротивление и, следовательно, уменьшить темновой ток, резистивный путь образует зигзагообразный рисунок на керамической подложке. Фотоэлемент CdS — это очень недорогое устройство, их часто используют для автоматического затемнения, а также для определения времени темноты или сумерек, в фотореле для уличного освещения.

Типовая схема электронного управляющего блока, где используются светопроводящие элементы из сульфида кадмия, приведена на рисунке:

схема блока управления

Преимущества фотореле

В отличие от управляющих компонентов контактного типа, например, электромеханических или индукционных реле, описываемые устройства отличаются своей долговечностью. Кроме того, данные устройства на полевых транзисторах (так называемых MOSFEТ-транзисторах) меньше нагреваются, а потому могут быть применены в длительно эксплуатируемых управляющих схемах, например, в фотореле для уличного освещения.

металлооксидный транзистор с полевым затвором
Металлооксидный транзистор с полевым затвором

Применение МДП-транзисторов в качестве устройства для вывода сигнала позволяет использовать их в схемах твердотельных реле, которые функционируют как на переменном, так и на постоянном токе.

Последующее сравнение эффективности изделия с другими типами следящих устройств аналогичного предназначения может быть выполнено по следующим параметрам:

  1. Необходимо минимальное монтажное пространство (меньше, чем у реле с подвижными элементами).
  2. Надёжность (выше, поскольку при этом отсутствуют подвижные контакты, изнашивающиеся в процессе трения и электрической эрозии).
  3. Потребление энергии (меньше из-за отсутствия вспомогательных компонентов; возможна работа от аккумуляторных источников питания).
  4. Интенсивность переключения — не зависит от числа включений, ибо нет необходимости в передающих устройствах.

Фотореле выгодно характеризуются также отсутствием шума при работе, высокой скоростью переключения режимов управления, отсутствием звуковых щелчков при работе.

Компактность схемы типового фотореле для уличного освещения иллюстрирует рисунок:

монтажная схема фотореле

Области рационального применения фотореле

Типовые ситуации, в которых требуется присутствие данного устройства:

  • Когда включение и выключение цепи производится при помощи сигнала малой мощности;
  • Когда несколько цепей должны управляться одним сигналом.

Эффективность применения фотореле обуславливается также и их универсальностью (помимо стандартной аппаратуры контроля можно использовать компьютеры или ноутбуки). Это позволяет реализовывать также и логические управляющие команды типа «если…то…».

Рассмотрим использование фотореле для уличного освещения. Технология их применения основана на использовании триггерных FEТ-переключателей.

Блок-схема фотореле с FET-переключателем
Блок-схема фотореле с FET-переключателем

В приведенной блок-схеме используется серия К МДП-транзисторов.  В отличие от твердотельных реле, схема управляет фотодиодами напрямую. Это обеспечивает гораздо более высокие скорости переключения, поскольку время отключения питания при включении светодиода некритично. Из-за отсутствия механических составляющих поддерживается высокая компактность устройства, однако физический изоляционный барьер здесь отсутствует, а потому необходимо использовать только низковольтный управляющий сигнал.

Поскольку фотореле является альтернативой уже существующей панели дистанционного управления освещением, то прежде всего стоит подумать — а так ли уж необходима подобная замена. Если существующая система полностью соответствует электрическим нормам, то перед нагрузкой достаточно просто добавить релейную панель, и полный контроль за осветительной цепью будет обеспечен. В небольшом корпусе может быть размещено до 64 фотореле вместе с источником низкого напряжения, а рядом можно расположить панель выключателя.  Чем меньше число цепей, тем более экономичным становится применение релейной панели.

Фотореле можно использовать для управления однополюсными цепями 127/220 В переменного тока и двухполюсными (208…240 В) цепями переменного тока. Релейные панели наиболее экономичны при управлении меньшими нагрузками, но имеют один недостаток — они рассчитаны на ограниченное количество циклов включения/ выключения: от 20000 до 50000 (при нормальных обстоятельствах этого хватит примерно на 5 лет).

Общий вид блочной компоновки фотореле для уличного освещения и монтажная схема приведены на следующих рисунках.

Некоторые нюансы имеются в использовании фотореле совместно с датчиками движения.  Как правило, уличные фонари включаются на всю ночь. Но в ночное время уличные фонари не нужны, если нет движения. Поэтому всё чаще используют схемы, которые включают уличные фонари только при перемещения транспортного средства и некоторое время после него. Используется микроконтроллер AVR 8051 и несколько пар (чем больше, тем лучше) инфракрасных (ИК) датчиков.

подключение релейной панели управления освещением
Подключение релейной панели управления освещением

Предлагаемая система состоит из микроконтроллера Atmega8, LDR, PIR-датчика и RTC. Эта система управляет уличным освещением, используя светозависимый резистор и ИК-датчик.

Уличные фонари включаются в зависимости от интенсивности светового потока, который воспринимается на LDR. Если такая интенсивность на фоторезисторах низкая, значение их сопротивления — высокое. С уменьшением общей освещённости это значение увеличивается, и, таким образом, определяет, когда уличные фонари должны включиться.

Ночью движение транспорта минимально. Это обстоятельство можно использовать для настройки контроллера. По наступлении пикового времени, когда трафика нет, фотореле отключит наружное освещение. При появлении единичного транспортного средства ИК-датчик подаст управляющий сигнал микроконтроллеру. Тот на 2…3 минуты включит освещение, после чего автоматически его выключит.

блочная компоновка фотореле
Блочная компоновка фотореле
схема включения фотореле для управления наружным освещением
Схема включения фотореле для управления наружным освещением
установка датчиков движения
Установка датчиков движения
монтажная схема управления движением на базе фотореле
Монтажная схема управления движением на базе фотореле

Типичные неисправности фотореле

Неудачи в применении фотореле чаще всего вызваны с их неправильным выбором и/или эксплуатацией. Наиболее распространены отказы, превышение ресурса, однако можно перечислить ещё ряд причин:

  1. Превышение значения допустимого тока и/или напряжения.
  2. Сбои, связанные с длительностью рабочего цикла (особенно, когда реле переключает очень низкие уровни сигнала или, когда реле не срабатывает очень часто, из-за чего контакты окисляются).
  3. Загрязнение рабочей поверхности фотодатчиков (особо характерно для фотореле, которые обслуживают промышленное оборудование).
  4. Неудовлетворительная вентиляция релейных панелей, что вызывает, перегрев MOSFEТ-транзисторов.

При надлежащем регламентном облуживании все эти проблемы можно предотвратить. Сроки службы реле и его номинальная мощность всегда указываются производителем. Эти параметры определяются для работы фотореле в условиях переключения низкого уровня и соответствуют минимальному количеству операций, которое можно ожидать без механического отказа из-за износа контактов.

Гораздо информативнее, когда разработчик указывает в инструкции по эксплуатации срок службы реле в условиях горячего переключения нагрузки, когда значения тока и напряжения максимальны (при номинальной мощности устройства). В этих случаях реле выходит из строя по факту загрязнения материала контактов, когда для срабатывания приходится увеличивать ток и напряжение: это сопровождается резким возрастанием сопротивления при прохождении управляющего сигнала. Поэтому световоспринимающие поверхности следует очищать возможно чаще, используя для этих целей химически нейтральные очистители.

При интенсивном применении датчик фотореле никогда не работают дольше, чем указано в их технической характеристике. Даже в приложениях с низким уровнем сигнала неисправности в проверяющих устройствах могут вызывать сбои устройства. В результате пусковые токи, вызванные ёмкостными нагрузками, горячим переключением и скачками напряжения ускоряют их старение.

Видео по теме

Ссылка на основную публикацию
Adblock
detector